tensorflow

من یک مهندس فناوری اطلاعات هستم که علاقه زیادی به دنیای فناوری اطلاعات، برنامه نویسی، امنیت و شبکه دارم.

یادگیری ماشین لرنیتنگ یا یادگیری ماشینی را از کجا شروع کنیم؟

۵۰۷ بازديد
اگر واقعا می خواهید قابلیت ها و محدودیت های یادگیری ماشین را درک کنید، باید دستیار خود باشید. در اینجا یک لیست کوتاه از گزینه های برای مبتدیان است.
هر کس باید یک درک مفهومی از یادگیری ماشین داشته باشد تا بتوانند با تمرینکنندگان به طور موثرتر ارتباط برقرار کنند. برای اینکه واقعا بدانید که یادگیری ماشین چه چیزی می تواند و نمی تواند انجام دهد، شما باید با آن دست و پنجه نرم کنید، این همان چیزی است که کنجکاو، سازندگان حرفه ای و حل کننده های DIY انجام می دهند.


نقطه شروع برای افراد بر اساس آموزش و تجربه آنها متفاوت است. با این حال، عناوین منابع ممکن است لزوما این واقعیت را منعکس نکنند. در زیر یک لیست کوتاه از منابع با کمی درک به نیاز و ارزش خود را است. یادگیری عمیق، یک زیر شاخه یادگیری ماشین، عمدا حذف شده است تا تمرکز این مقاله را به یادگیری ماشین به طور کلی حفظ کنید.

مسابقات

مسابقات فرصتی را برای هر کسی فراهم می کند تا با یادگیری ماشین دست به کار شود. اجازه ندهید که کلمه "رقابت" شما را بترساند، زیرا شما منابع زیادی در این سایت ها برای هر کسی به صورت رایگان در اختیار دارید. بعدها، اگر تصمیم به رقابت دارید، و اگر موقعیتی برجسته ای در هیئت مدیره رهبر کسب کنید، شما باید چیزی بیشتر به رزومه خود اضافه کنید.

Kaggle یک پلتفرم علمی داده است که کسب و کارها برای حل مشکل به مشکل برخورد می کنند. کاربران می توانند به مجموعه داده ها، هسته، دوره های مینی رایگان، انجمن، وبلاگ ها، پست های شغلی، مستندات و موارد دیگر دسترسی داشته باشند.

Open ML (بتا 2) خود را "جنبش فراگیر برای ساختن اکوسیستم باز، سازمان یافته و آنلاین برای یادگیری ماشین" توصیف میکند. این ابزارهای منبع باز را برای کشف و به اشتراک گذاری داده ها ایجاد می کند. شرکت کنندگان می توانند داده های باز را به محیط یادگیری ماشین های مورد علاقه خود بکشند و خود را با مدل های خود یا با کمک دانشمندان داده های اجتماعی بسازند.

AnalyticsVidhya خود را به عنوان "اکوسیستم علم اطلاعات نسل بعدی" قرار می دهد. وب سایت آن دسترسی به مسابقات، جامعه، آموزش، وبلاگ ها، گواهینامه ها و لیست های کاری را فراهم می کند.

دوره های آنلاین، bootcamps و برنامه های گواهینامه

توجه داشته باشید که بسیاری از دوره های مقدماتی، سطح پایه ای دانش را در اختیار همه قرار می دهند، بنابراین عناوین منابع می توانند گمراه کننده باشند. به عنوان مثال، دوره های مقدماتی و پیشرفته "Introduction to Machine Learning"، مهارت های برنامه نویسی R یا آموزش زبان Python و سطح دانش در کالج، جبر خطی و آمار را در نظر می گیرند. همچنین دوره هایی برای رهبران کسب و کار و دیگران که نیاز به مهارت های برنامه نویسی اساسی (نه لزوما در R یا Python) و مهارت های ریاضی پایه وجود دارد.

واژه های مشاوره از متخصصان

اگر میخواهید با یادگیری ماشین موفق شوید، جاش فلیچر، یک مهندس مکانیک در AI و مشاوره یادگیری ماشین Atrium، سه توصیه ارائه میدهد:

یاد بگیرید چگونه داده ها را بکشید و دستکاری کنید
داده های حقیقی هرگز به اندازه کافی در کتاب های درسی نیست
برای استفاده از مدل هایی که می سازید، باید بدانید که اطلاعات چه معنایی دارد. شما نمی توانید این را بدون درک عملیات تجاری بدانید
دانش آموخته سرباز آمین کاظروونی، زاپوپس توصیه می کند با مشکالت کسب و کار شروع به جای یادگیری دستگاه کند.

کازروونی گفت: "ایجاد مشکلات برای راه حل های سرد، به ندرت یک سرمایه گذاری صحیح است." "در عوض، به بزرگترین مشکلات و داده های شما نگاه کنید و سپس آن مشکلات را با داده های خود مطابقت دهید. این به شما اجازه می دهد تا راهکارهای یادگیری ماشین را برای مسائل اصلی کسب و کار آماده کنید [و] شما را برای احتمال بسیار بیشتر برای موفقیت در فضا آماده می کند. "

Konrad Pabianczyk، تیم مدیریت کسب و کار AI در Netguru طرفداران Scikit-Learn برای Python و Tensorflow است.

"Pabianczyk گفت:" Scitkit یادگیری دارای مدارک خوب هدفمند درک روش های مختلف است. " "این می تواند شروع خوبی برای یادگیری، به عنوان مثال .. که در آن الگوریتم های متعدد برای درک بهتر بهبود یافته مقایسه شده است. برای پیدا کردن چارچوب های یادگیری ماشین خاص، شروع به شروع با Tensorflow".